

Available online at www.sciencedirect.com

Journal of Power Sources 172 (2007) 870-876

www.elsevier.com/locate/jpowsour

Local structure in the Li-ion battery cathode material $\text{Li}_x(\text{Mn}_y\text{Fe}_{1-y})\text{PO}_4$ for $0 < x \le 1$ and y = 0.0, 0.5 and 1.0

Christopher M. Burba^{a,*}, Roger Frech^b

^a Department of Natural Sciences, Northeastern State University, 611 N Grand Ave., Tahlequah, OK 74464, USA ^b Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA

> Received 25 April 2007; received in revised form 16 May 2007; accepted 17 May 2007 Available online 25 May 2007

Abstract

Infrared and Raman spectroscopy have been used to investigate the Li-ion battery cathode materials $Li_x(Mn_yFe_{1-y})PO_4$ for $0 < x \le 1$ and y = 0.0, 0.5 and 1.0. In the Raman spectrum of $Li(Mn_{0.5}Fe_{0.5})PO_4$, the frequency of the PO_4^{3-} symmetric stretching mode is very similar to that found in LiFePO₄ and LiMnPO₄, suggesting that the P–O bond lengths are similar across the entire $Li(Mn_yFe_{1-y})PO_4$ solid-solution series. The more localized v_1 and v_3 bands (symmetric and antisymmetric PO_4^{3-} stretching modes, respectively) in the infrared spectra exhibit two-mode behavior for all three $Li(Mn_yFe_{1-y})PO_4$ compositions studied, whereas the PO_4^{3-} antisymmetric bending modes (v_4) and the Li⁺ cage mode frequencies vary with Mn^{2+} concentration. The vibrational modes in $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ are sensitive to lithium content (x) and are, thus, used to investigate changes in the $(Mn_{0.5}Fe_{0.5})PO_4$ framework under cycling. The lack of spectral changes during the Fe^{2+}/Fe^{3+} redox couple (3.7 V versus Li^+/Li) suggests that the PO_4^{3-} anions have similar local environments in $Li(Mn_{0.5}^{(II)}Fe_{0.5}^{(II)})PO_4$ and $Li_{0.5}(Mn_{0.5}^{(II)}Fe_{0.5}^{(III)})PO_4$. Two-phase behavior is confirmed during the Mn^{2+}/Mn^{3+} redox couple (4.2 V), and the infrared spectrum for $(Mn_{0.5}^{(III)}Fe_{0.5}^{(III)})PO_4$ is similar to that of FePO₄ since both phases contain PO_4^{3-} anions coordinated only to trivalent transition metal ions. However, the PO_4^{3-} anions are much more distorted in $(Mn_{0.5}^{(III)}Fe_{0.5}^{(III)})PO_4$ structure. Raman spectra suggest that the carbon layer coating the $Li(Mn_{0.5}Fe_{0.5})PO_4$ particles (to improve electronic contact between particles) is predominantly composed of sp²-hybridized carbon atoms.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Li(Mn,Fe)PO4; Infrared spectroscopy; Raman spectroscopy; Cathodes; Lithium-ion batteries

1. Introduction

Over the past few years, there has been considerable research into developing phospho-olivine LiMPO₄ (M = Fe, Mn, Co or Ni) compounds for the next generation of lithium rechargeable batteries. Most of this research effort has been focused on LiFePO₄ because of its high theoretical capacity (170 mAh g⁻¹) [1], 3.5 V operating potential versus Li⁺/Li, excellent coulombic efficiency under optimal conditions [2], and environmentally benign constituents [3]. Lithium extraction occurs in a topotactic two-phase process, whereby Li⁺ ions are removed from the tryphilite phase (LiFePO₄) to form the heterosite phase FePO₄ [1,4]. Recently it has been shown that the situation is somewhat

0378-7753/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2007.05.075 more complicated [5,6]. In the very early stages of delithiation, lithium ions diffuse from the LiFePO₄ particles through a single-phase reaction pathway, leaving the cathode with an approximate composition of Li_{0.97}FePO₄. At this point, lithium extraction becomes two-phase and a shell of lithium-deficient Li_{0.03}FePO₄ is produced on the surface of the particles. As the cells are further charged, the Li_{0.03}FePO₄ shell grows inward at the expense of the Li_{0.97}FePO₄ core. At the end of the charging step, the cathode undergoes a second single-phase reaction to produce FePO₄.

In the original studies, only a minor fraction of the theoretical specific capacity was achieved for LiFePO₄, especially at higher rates [1]. This was attributed to the diffusion-limited transfer of Li⁺ ions across the phase boundary of LiFePO₄ and FePO₄ [1], which is related to the poor intrinsic electronic conductivity of LiFePO₄ (between 10^{-9} and 10^{-8} S cm⁻¹ at room temperature) [7]. Several approaches have been employed to

^{*} Corresponding author. Tel.: +1 918 444 3835; fax: +1 918 458 2325. *E-mail address:* burba@nsuok.edu (C.M. Burba).

improve the cycling performance of LiFePO₄-based cathodes. One has been to optimize the synthesis conditions so that the formation of Fe³⁺ impurities is suppressed and the particle sizes are minimized. These smaller particles have a larger surface area available for Li⁺ (de)intercalation [8]. Other material processing strategies has been to try to increase the effective electronic conductivity of the LiFePO₄ electrode to technologically useful levels [9–13]. These efforts include coating the particles with a thin layer of carbon [14].

Phospho-olivine LiMnPO₄ has also been investigated as a potential cathode material for lithium rechargeable batteries, since it has a higher operating potential than LiFePO₄ (4.1 V versus Li⁺/Li) [15–18]. Here, lithium extraction also proceeds according to a two-phase mechanism between LiMnPO4 and MnPO₄ [18]. However, the rate capability of this material is very poor compared to LiFePO₄ [17]. This may be because LiMnPO₄ is an insulator with a $\sim 2 \text{ eV}$ spin exchange band gap, whereas LiFePO₄ is a semiconductor with a $\sim 0.3 \text{ eV}$ crystal field band gap [19]. A number of workers have shown that the Mn²⁺/Mn³⁺ redox couples can be accessed at reasonable rates by forming the Li(Mn_vFe_{1-v})PO₄ solid-solution [1,19–24]. These compounds are isostructural with their LiFePO4 and LiMnPO₄ end-members, adopting the same olivine-like structure as LiFePO₄: space group Pnma (D_{2h}^{16}) [22–24]. The divalent transition metal ions are randomly distributed over 4c sites (C_s symmetry). Tetrahedrally coordinated P⁵⁺ cations are also located on 4c sites and bridge the MO₆ chains to form an interconnected three-dimensional structure. The Li⁺ ions are octahedrally coordinated and situated on 4a sites (C_i symmetry). Lithium (de)intercalation proceeds over two voltage plateaus at 3.5 and 4.1 V, corresponding to the Fe^{2+}/Fe^{3+} and Mn^{2+}/Mn^{3+} redox couples, respectively [1], with the relative length of each plateau depending on the manganese concentration.

The two-dimensional phase diagram of $Li_x(Mn_yFe_{1-y})PO_4$ $(0 \le x, y \le 1)$ has been investigated extensively with Xray diffraction, X-ray absorption, magnetic susceptibility and Mössbauer techniques [23,25-27]. Yamada et al. reported unusual phase behavior for compounds with intermediate lithium concentrations [23]. Specifically, they noted that the presence of Mn²⁺ ions introduces a single-phase mechanism during the Fe²⁺/Fe³⁺ redox couple as Li⁺ ions are extracted from $Li_x(Mn_vFe_{1-v})PO_4$ [23]. At high Mn^{2+} concentrations, the Fe²⁺/Fe³⁺ couple proceeds entirely by this single-phase mechanism, while for low Mn²⁺ concentrations, the Fe²⁺/Fe³⁺ couple is associated with a two-phase followed by a singlephase mechanism. Furthermore, lithium extraction during the Mn^{2+}/Mn^{3+} redox couple is described by a two-phase reaction regardless of manganese concentration. Recently, Bramnik et al. have used high resolution X-ray diffraction to propose twophase delithiation reactions for both Fe^{2+}/Fe^{3+} and Mn^{2+}/Mn^{3+} redox couples in $Li_x(Mn_{0.6}Fe_{0.4})PO_4$ [28]. However, their data was consistent with a single-phase region $0.55 \le x \le 0.67$ in $Li_x(Mn_{0.6}Fe_{0.4})PO_4$ [28].

Although there have been several investigations into the local structure of these LiMPO₄ compounds, the majority have used Mössbauer spectroscopy and X-ray absorption spectroscopy to focus on the transition metal ions [4,8,21–27,29,30]. Tucker et

al. utilized ⁷Li and ³¹P magic angle spinning nuclear magnetic resonance (MAS-NMR) to investigate local structure around the Li and P atoms in some LiMPO₄ materials [31,32]. A number of researchers have shown that vibrational spectroscopy is very useful in probing fundamental lithium intercalation reactions in a variety of crystalline electrode materials [33-42]. For example, the LiFePO₄-FePO₄ phase change could be easily identified in Li_x FePO₄ (0 $\leq x \leq 1$) cathodes using vibrational spectroscopy [42]. The vibrational modes of the phosphate anions are expected to be quite sensitive to lithium extraction in $Li(Mn_vFe_{1-v})PO_4$ because the lithium and transition metal ions are coordinated to the oxygen atoms of the covalent P-O bonds in the tetrahedral PO_4^{3-} anions. Thus, a vibrational spectroscopic investigation of the carbon-coated compounds $Li_x(Mn_yFe_{1-y})PO_4$ (y=0, 0.5, 1) compounds will provide a unique perspective on the lithium (de)intercalation reactions accompanying cathode cycling.

2. Experimental methods

Samples of LiFePO₄ and LiMnPO₄ were received from Kerr-McGee Stored Power Company. Lithium ions were chemically extracted from LiFePO₄ using a sufficient quantity of bromine in acetonitrile to form FePO₄ [42]. The product was washed thoroughly with acetonitrile and dried overnight under reduced pressure. Samples of LiFe_{0.5}Mn_{0.5}PO₄ were prepared by the solid-state reaction of stoichiometric amounts of FeC₂O₄·2H₂O, $MnCO_3$, $NH_4H_2PO_4$ and Li_2CO_3 . These starting materials were thoroughly mixed and ground together with 4 wt% cellulose acetate. The synthesis was conducted under a flow of nitrogen gas to prevent oxidation of the Fe²⁺ ions. The mixture was slowly heated to 700 °C and annealed for 24 h. The crystal structure was confirmed by X-ray powder diffraction (STOE & Cie GmbH STADI powder diffractometer). Exposures were made in transmission mode with Ge-monochromatized Co $K_{\alpha 1}$ radiation $(\lambda = 1.78897 \text{ Å}).$

Lithium ions were electrochemically extracted from the carbon-coated Li($Mn_{0.5}Fe_{0.5}$)PO₄ to form the Li_x($Mn_{0.5}Fe_{0.5}$)PO₄ materials. To this end, cathodes were prepared by mixing 87 wt% active material, 5 wt% KS-6 graphitic carbon (TimCal, Ltd.), 5 wt% Super P and 3 wt% Teflon. The resulting mixture was then pressed into a thin sheet. Circular disks were cut from the sheet (0.62 cm² and 4.0 \pm 0.6 mg) and dried overnight at 150 °C in a vacuum oven. Coin cells were constructed using a lithium metal anode and an electrolyte of 1 M LiPF₆ in a 1:1 solution of ethylene carbonate (EC) and diethyl carbonate (DEC). The cell potential was swept potentiostatically between 4.60 and 2.85 V at approximately 55 °C using a 0.5 mV s^{-1} rate. All of the cells were taken through one complete cycle before they were charged to the desired voltage. Afterwards, the cells were disassembled under an argon atmosphere, washed twice in DEC, dried under reduced pressure at room temperature and stored under argon.

Raman scattering experiments were conducted on a Jobin-Yvon ISA T64000 spectrometer in the triple subtractive mode. A 532 nm laser (Spectra-Physics Millennia Vs) was focused onto the surface of the powders through the $80 \times$ objective lens of an Olympus microscope, and all of the spectra were recorded in a 180° back-scattering configuration using a CCD detector. The laser power was set to approximately 10 mW at the laser head to avoid thermal damage to the samples. Transmission FT-IR spectra were recorded at 1 cm^{-1} resolution with a Bruker IFS 66v spectrometer equipped with a KBr beam splitter and a DTGS detector.

3. Results and discussion

3.1. The Raman spectrum of $Li(Mn_{0.5}Fe_{0.5})PO_4$

The Raman spectrum of $Li(Mn_0 5Fe_{0.5})PO_4$ is presented in Fig. 1. Two broad bands at ca. 1595 and 1342 cm⁻¹ dominate the spectrum; these bands are due to the carbon coating on the surface of the particles. At the Brillouin zone center, the vibrational modes of crystalline graphite are distributed among the irreducible representations of the D_{6h} point group $(A_{2u} + 2B_{2g} + E_{1u} + 2E_{2g})$ [43]. Only the two E_{2g} modes are Raman-active in first-order scattering experiments [43]. These vibrational modes correspond to the in-plane motion of the carbon atoms and have been observed at 42 and 1581 cm⁻¹ (G band) [44]. Several researchers have reported additional bands in the Raman spectrum of microcrystalline graphite between 1318 and 1355 cm^{-1} (D band) and at 1623 cm^{-1} (D' band) [43–46]. These bands are thought to be non-Brillouin-zone-center phonons arising from the crystal boundary regions in the microcrystalline graphite. Tuinstra and Koenig [43] and Nikiel and Jagodzinski [46] have shown that the integrated intensity ratio of the G and D bands is inversely proportional to the intraplane crystallite size, La, in polycrystalline graphite. The linewidths of the G, D and D' bands are also somewhat dependant on L_a [46].

Doeff et al. characterized a series of carbon-coated LiFePO₄ compounds with Raman spectroscopy and determined that the electrochemical discharge capacity depends on the integrated

Fig. 1. Raman scattering spectrum of carbon-coated Li(Mn_{0.5}Fe_{0.5})PO_4. The dagger (†) denotes the Ag mode of ν_1 .

intensity ratio of the D and G bands and on the relative amount of sp²- and sp³-hybridized carbon [47]. Materials with a low D/G ratio were predominantly composed of sp²-type carbon and gave the best electrochemical performance. Wagner et al. [48] and Ramsteiner and Wagner [49] used resonance Raman spectroscopy to probe the relative abundance of sp²- and sp³hybridized carbon in amorphous carbon and microcrystalline graphite. The resonance Raman technique is sensitive to the electronic $\pi - \pi^*$ transition that occurs between 3.5 and 6.5 eV for sp²-bonded carbon atoms [48]. Although resonance Raman experiments were not performed on the Li(Mn_{0.5}Fe_{0.5})PO₄ samples, the bands at 1595 and 1342 cm^{-1} in Fig. 1 closely resemble the bands of carbon-coated LiFePO₄ (sample 3A) from Doeff et al. [47] and the microcrystalline graphite, which is predominately sp²-hybridized carbon, from Wagner et al. [48]. It is therefore reasonable to conclude that the $Li(Mn_{0.5}Fe_{0.5})PO_4$ particles have at least a partial coverage of disordered graphite, composed mostly of sp²-coordinated carbon atoms.

Fig. 1 also contains a weak band at 948 cm^{-1} that is assigned to the Ag mode of the totally symmetric stretching vibrations of the PO_4^{3-} anions (ν_1) for Li(Mn_{0.5}Fe_{0.5})PO₄. Although its intensity is much weaker than the corresponding bands in other LiMPO₄ (M=Mn, Fe, Co and Ni) systems, the frequencies are very similar [42,50–54]. This suggests that the P–O bond lengths in $Li(Mn_{0.5}Fe_{0.5})PO_4$ are similar to those in LiFePO₄ and LiMnPO₄ [55]. The relatively weak intensity of the band in $Li(Mn_{0.5}Fe_{0.5})PO_4$ is probably due to the optical skin effect of the carbon-coated Li(Mn_{0.5}Fe_{0.5})PO₄ particles. Electromagnetic radiation attenuates exponentially as it passes through an absorbing sample, and the effective penetration depth is proportional to the wavelength of the light and the optical constants of the sample [56]. Typically, the penetration depth is between 1/4 and 1/2 of the wavelength of the light. In these experiments, the wavelength of the Raman excitation laser is 532 nm. The laser beam therefore penetrates only a fraction of a micron into the particles, and the scattering volume predominantly contains the carbonaceous surface layer and only a small amount of the Li(Mn_{0.5}Fe_{0.5})PO₄ material.

3.2. The infrared spectra of $Li(Mn_vFe_{1-v})PO_4$

Infrared spectra of the intramolecular stretching modes (ν_1 and ν_3) for Li(Mn_yFe_{1-y})PO₄ ($0 \le y \le 1$) are presented in Fig. 2. Spectral assignments for many of the LiMPO₄ vibrations have been previously reported in the literature and are assumed here [42,50,54,57]. In general, the infrared spectra of LiFePO₄ and LiMnPO₄ are very similar. Both compounds have two bands between 1000 and 800 cm⁻¹ that are assigned to ν_1 , and each spectrum contains three bands at 1138, 1095 and ca. 1060 cm⁻¹ belonging to ν_3 . The infrared spectrum of Li(Mn_{0.5}Fe_{0.5})PO₄ exhibits two-mode behavior, whereby the PO₄³⁻ intramolecular stretching region is essentially a superposition of spectra characteristic of the two end-members (LiFePO₄ and LiMnPO₄), and the relative intensities of the partially overlapping bands are governed by the phase composition of the material [58]. For example, there are two bands at 1067 and 1053 cm⁻¹ instead

Fig. 2. Infrared absorption spectra of v_1 and v_3 for Li(Mn_yFe_{1-y})PO₄ (y=0, 0.5, 1). The dashed lines denote the two-mode behavior in v_3 .

of a single band at the mean frequency for $Li(Mn_{0.5}Fe_{0.5})PO_4$ (see Fig. 2). This may be contrasted with one-mode behavior, where a broadened single band would be observed throughout the solid-solution series at a frequency that is roughly the weighted average of the frequencies of the end-members [58].

Fig. 3 contains infrared spectra of Li(Mn_yFe_{1-y})PO₄ between 700 and 450 cm⁻¹. Four bands ranging in frequency from 550 to 650 cm⁻¹ are assigned to antisymmetric PO_4^{3-} bending vibrations (ν_4). The bands near 500 and 465 cm⁻¹ are assigned to Li⁺ ion "cage modes" [50]. In these modes, Li⁺

Fig. 3. Infrared absorption spectra of ν_4 and the lithium cage modes for $\text{Li}(\text{Mn}_{\nu}\text{Fe}_{1-\nu})\text{PO}_4$ (y = 0, 0.5, 1). The arrows denote the lithium cage modes.

ions undergo translatory motion in an octahedral environment defined by nearest-neighbor oxygen atoms coordinating the Li⁺ ions. A factor group correlation analysis of the Li⁺ ion vibrations yields the 12 normal modes at the Brillouin zone center $(3A_u + 3B_{1u} + 3B_{2u} + 3B_{3u})$. These modes are distributed among the irreducible representations of the D_{2h} point group [50]. The modes with A_u symmetry are both Raman- and infraredinactive; this leaves nine IR-active Li⁺ ion cage modes in Li(Mn_yFe_{1-y})PO₄, which can mix with other vibrational modes of identical symmetry to produce bands representing a complex mixture of atomic motion. However, comparison of the vibrational spectra of LiFePO₄ and NaFePO₄ suggests that the Li⁺ ion cage modes are highly decoupled, and the bands near 500 and 465 cm⁻¹ consist almost entirely of Li⁺ ion translatory motion [59].

Unlike the stretching modes in Fig. 2, the lithium cage modes and v_4 do not exhibit two-mode behavior throughout the Li(Mn_yFe_{1-y})PO₄ solid-solution series. Instead, the frequencies of these bands depend on the value of y; for example, the bands at 648 and 637 cm⁻¹ in the LiFePO₄ spectrum merge and shift to lower frequency for increasing y. Although none of the phosphate vibrations consist only of P and O motion, the PO₄³⁻ bending modes generally contain more M²⁺ (M = Fe or Mn) and Li⁺ motion than the stretching modes. Thus, v_1 and v_3 are more localized than v_4 and the Li⁺ cage modes and exhibit two-mode behavior while the lower frequency modes do not [58].

3.3. The infrared spectra of $Li_x(Mn_{0.5}Fe_{0.5})PO_4$

Fig. 4 shows a cyclic voltammogram of the Li($Mn_{0.5}$ Fe_{0.5})PO₄ cells. On the anodic sweep, two peaks appear at 3.7 and 4.2 V, corresponding to the Fe²⁺/Fe³⁺ and Mn²⁺/Mn³⁺ redox couples, respectively [1]. The cells typically deliver capacities of 135 mAh g⁻¹. For simplicity, samples charged to 4.6 V are referred to as ($Mn_{0.5}Fe_{0.5}$)PO₄ even though there is residual lithium in the particles. During the cathodic sweep, Mn^{3+} is reduced to Mn^{2+} at 3.8 V, followed by the reduction of Fe³⁺ to Fe²⁺ at 3.3 V [1].

Fig. 4. Cyclic voltammogram of $Li(Mn_{0.5}Fe_{0.5})PO_4$ between 2.85 and 4.6 V (0.5 mV sec⁻¹). The asterisks (*) denote points where cells were disassembled for spectroscopic measurements of the cathode material.

Fig. 5. Infrared absorption spectra of ν_1 and ν_3 for Li_x(Mn_{0.5}Fe_{0.5})PO₄ and FePO₄ at various states of charge.

Fig. 5 contains infrared absorption spectra in the v_1 and v_3 frequency range for $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ cathodes with different Li content, along with FePO₄. Only minor spectral changes occur when Fe^{2+} is oxidized to Fe^{3+} (the initial OCV to 3.95 V) in the $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ cathodes. For example, a high frequency shoulder appears on the 1137 cm⁻¹ band. However, the v_1 and v_3 modes undergo dramatic changes during the Mn²⁺/Mn³⁺ redox couple (3.95–4.60 V). For instance, the two bands at 1076 and 1040 cm^{-1} replace the asymmetric band near 1060 cm^{-1} , while the three bands at 989, 968 and 944 cm^{-1} collapse into two bands at 972 and 929 cm^{-1} . There are several differences in the vibrational spectra of (Mn_{0.5}Fe_{0.5})PO₄ and FePO₄. The most intense v_3 mode of (Mn_{0.5}Fe_{0.5})PO₄ is at 1076 cm⁻¹, whereas the band is centered at 1099 cm^{-1} in the spectrum of FePO₄. The v_1 and v_3 bandwidths are also dependent on Li⁺ concentration over the Mn^{2+}/Mn^{3+} redox couple—the ($Mn_{0.5}Fe_{0.5}$)PO₄ bands are much broader than the corresponding FePO₄ bands.

Similar changes are observed for the ν_4 and Li⁺ cage modes in Fig. 6. Only minor spectral changes in the infrared bands are observed during the Fe²⁺/Fe³⁺ redox couple, but rather dramatic changes occur during the Mn²⁺/Mn³⁺ couple. For example, the intensity of the 496 cm⁻¹ band diminishes slightly when the cells are charged to 3.95 V, but the band at 661 cm⁻¹ increases in intensity at the expense of the 642 cm⁻¹ band. A new band appears at 532 cm⁻¹, which gradually replaces the 577 and 551 cm⁻¹ bands between 3.95 and 4.6 V. Additionally, the 661 and 642 cm⁻¹ bands become a single band centered near 650 cm⁻¹ in the (Mn_{0.5}Fe_{0.5})PO₄ spectrum. The Li⁺ cage modes essentially vanish during the Mn²⁺/Mn³⁺ redox couple, leaving a weak feature near 460 cm⁻¹ in the 4.6 V sample. This is possibly due to the residual Li⁺ ions in the (Mn_{0.5}Fe_{0.5})PO₄ particles.

Bramnik et al. used high resolution synchrotron XRD data to suggest two-phase mechanisms for the Fe^{3+}/Fe^{2+} and $Mn^{3+}/$

Fig. 6. Infrared absorption spectra of v_4 and the lithium cage modes for $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ and FePO₄ at various states of charge. The arrows denote the lithium cage modes.

Mn²⁺ redox couples of Li_x(Mn_{0.6}Fe_{0.4})PO₄ [28]. These two regions are connected by a narrow single-phase regime in the composition domain 0.55 < x < 0.67. We speculate that each $Li(Mn_vFe_{1-v})PO_4$ two-phase region follows a shell mechanism similar to Li_xFePO₄. Initial delithiation of Li(Mn_{0.5}Fe_{0.5})PO₄ is expected to proceed through a short single-phase mechanism to produce $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ with x slightly less than one. The particle surfaces then become encased with a thin layer of $Li_x(Mn_{0.5}^{(II)}Fe_{0.5}^{(III)})PO_4$ ($x \approx 0.5$) that migrates inward at the expense of the lithium-rich $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ core during the Fe²⁺/Fe³⁺ redox couple. A second single-phase transition connects the Fe²⁺/Fe³⁺ and Mn²⁺/Mn³⁺ redox couples at ca. x = 0.5. The Mn²⁺/Mn³⁺ redox couple is characterized by an immiscibility gap between $Li_{0.5}(Mn_{0.5}^{(II)}Fe_{0.5}^{(III)})PO_4$ and lithium-deficient $Li_x(Mn_{0.5}^{(III)}Fe_{0.5}^{(III)})PO_4$. In this domain, the lithium-deficient $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ forms another shell on the surface of the particles, which then migrates inward as the electrode is charged. At the end of the charging step, (Mn_{0.5}Fe_{0.5})PO₄ is formed after a third short single-phase mechanism.

Unfortunately, the two-phase mechanism that operates during the Fe²⁺/Fe³⁺ redox couple cannot be detected with infrared spectroscopy since the spectra undergo small changes. This behavior is quite different from that in the Li_xFePO₄ system, where FePO₄ bands appeared early in the delithiation process and continued to increase at the expense of the LiFePO₄ bands [42]. Spectral differences between Li_xFePO₄ and Li_x(Mn_{0.5}Fe_{0.5})PO₄ at the same level of delithiation must be due to the presence of the Mn²⁺ ions. In Li(Mn_{0.5}^(II)Fe_{0.5}^(II))PO₄, the Mn²⁺ and Fe²⁺ ions are distributed among symmetrically equivalent 4*c* sites; thus, there are a number of possible coordination environments for the PO₄³⁻ anions. During the first electrochemical plateau, particles consist of a lithium-rich Li_x(Mn_{0.5}Fe_{0.5})PO₄ encased by Li_x(Mn_{0.5}Fe_{0.5})PO₄ (x=0.5). The PO₄³⁻ anions are coordinated to Li⁺, Mn²⁺ and Fe³⁺ ions in Li_x(Mn_{0.5}Fe_{0.5})PO₄ (x=0.5). In contrast, particles of Li_xFePO₄ consist of a LiFePO₄ core within a shell of FePO₄ [1,4]; in FePO₄ the PO₄³⁻ anions are only coordinated to Fe³⁺ ions. The lack of spectral changes in Figs. 5 and 6 suggests that the local structure about the PO₄³⁻ anions in Li_x(Mn_{0.5}Fe_{0.5})PO₄ does not change significantly during the Fe²⁺/Fe³⁺ redox couple. This is probably because the Li⁺ and Mn²⁺ ions cause the structural environment of the PO₄³⁻ anions in Li_{0.5}(Mn_{0.5}^(II)Fe_{0.5}^(III))PO₄ to be more similar to that in Li(Mn_{0.5}^(II)Fe_{0.5}^(III))PO₄ than in FePO₄.

The two-phase mechanism can be easily discerned with infrared spectroscopy during the Mn^{2+}/Mn^{3+} redox couple (Figs. 5 and 6). Between 3.95 and 4.60 V, several new bands appear and increase in intensity as the Mn^{2+} is oxidized to Mn^{3+} . This behavior is identical to the spectral changes observed for the two-phase delithiation of LiFePO₄ [42]. Indeed, the frequencies of the ($Mn_{0.5}^{(III)}$ Fe_{0.5}^(III))PO₄ modes are very similar to those of FePO₄ [42]. This is because of the similar local structure in ($Mn_{0.5}^{(III)}$ Fe_{0.5}^(III))PO₄ and FePO₄ in that both phases contain PO₄³⁻ anions that coordinate only trivalent transition metal ions.

Above 3.95 V, the $(Mn_{0.5}Fe_{0.5})PO_4$ bandwidths become considerably larger than in FePO₄. This indicates that there is a higher degree of disorder around the PO_4^{3-} anions in $(Mn_{0.5}Fe_{0.5})PO_4$ than in FePO₄. Previous experiments using extended X-ray absorption fine structure measurements have clearly shown that the local structure around the Mn cations becomes distorted when the Mn²⁺ ions oxidize to Mn³⁺ [22,23]. This was attributed to a strong electron–lattice interaction with the Mn³⁺ ions in the $(Mn_yFe_{1-y})PO_4$ materials (Jahn–Teller effect). The O atoms forming the MnO₆ octahedra are covalently bonded to P atoms in the phospho-olivines. Thus, local deformations in the Mn octahedra will directly affect the PO_4^{3-} vibrational modes through the covalent P–O bonds, and result in the significant band broadening observed for the PO_4^{3-} anions in $(Mn_{0.5}Fe_{0.5})PO_4$.

4. Conclusions

The local structure of $Li_x(Mn_yFe_{1-y})PO_4$ was explored by vibrational spectroscopic methods for $0 < x \le 1$ and y = 0.0, 0.5 and 1.0. Raman spectra of the carbon-coated $Li(Mn_{0.5}Fe_{0.5})PO_4$ particles are dominated by two intense bands that are assigned to the G and D bands of graphite. The relative intensities of these bands suggest that the particles are predominately covered with disordered, sp²-coordinated carbon atoms. The Raman spectrum also contains a weak band at 948 cm⁻¹ assigned to the Ag mode of ν_1 . The frequency of this band agrees very well with previous Raman spectroscopic measurements of ν_1 in other LiMPO₄ phospho-olivine systems [42,50–54,57], indicating that the P–O bond lengths change insignificantly in $Li(Mn_yFe_{1-y})PO_4$ solid solutions [55].

The infrared spectrum of Li(Mn_{0.5}Fe_{0.5})PO₄ in the PO₄³⁻ intramolecular stretching region (ν_1 and ν_3) shows two-mode behavior; however the Li⁺ cage modes and ν_4 do not exhibit

this behavior. Instead, these bands are intermediate between the two end-members (LiFePO₄ and LiMnPO₄), and the Li⁺ cage modes and ν_4 frequencies depend on Mn/Fe composition. The ν_1 and ν_3 vibrations, which exhibit two-mode behavior, are more localized than the ν_4 and Li⁺ cage modes.

The PO_4^{3-} vibrations of the Li(Mn_{0.5}Fe_{0.5})PO₄ solid-solution are sensitive to lithium extraction, with only minor changes occurring in a few of the bands during the Fe²⁺/Fe³⁺ redox couple. However, significant changes occur in the PO_4^{3-} vibrations and Li⁺ ion cage modes during the Mn²⁺/Mn³⁺ redox couple. The infrared spectra suggest that the local structure of the PO_4^{3-} anions change insignificantly during the Fe^{2+}/Fe^{3+} redox couple. This is possibly due to the coordination of the PO_4^{3-} anions by Li⁺ and Mn²⁺ ions in addition to Fe³⁺. Moreover, the infrared spectra confirm a two-phase mechanism for the oxidation of Mn²⁺ to Mn³⁺ between 3.95 and 4.60 V. The bandwidths of the $Li_x(Mn_{0.5}Fe_{0.5})PO_4$ ($0 \le x \le 0.5$) modes show some dependence on the lithium concentration; the $(Mn_{0.5}Fe_{0.5})PO_4$ bands are much broader than the corresponding bands for FePO₄. This indicates that the PO_4^{3-} anions are more disordered in (Mn_{0.5}Fe_{0.5})PO₄ compared to FePO₄. The local disorder amongst the anions is probably due to local deformations in the MnO₆ octahedra induced by the Jahn-Teller active Mn³⁺ ions in (Mn_{0.5}Fe_{0.5})PO₄.

Acknowledgements

The authors sincerely thank the Kerr-McGee Stored Power Company for providing the LiFePO₄ and LiMnPO₄ samples. Prof. John O. Thomas and Dr. Anton Nytén are also thanked for providing the Li(Mn_{0.5}Fe_{0.5})PO₄ and their careful review of the manuscript as well as insightful comments. This work was funded by the US Department of Defense, Army Research Office under project number W911NF-04-1-0322.

References

- A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188–1194.
- [2] K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, J. Power Sources 134 (2004) 124–129.
- [3] M.S. Whittingham, Chem. Rev. 104 (2004) 4271-4301.
- [4] A.S. Andersson, B. Kalska, L. Häggström, J.O. Thomas, Solid State Ionics 130 (2000) 41–52.
- [5] A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Electrochem. Solid-State Lett. 8 (2005) A409–A413.
- [6] V. Srinivasan, J. Newman, J. Electrochem. Soc. 151 (2004) A1517–A1529.
- [7] S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123–128.
- [8] A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224–A229.
- [9] J. Barker, M.Y. Saidi, J.L. Swoyer, Electrochem. Solid-State Lett. 6 (2003) A53–A55.
- [10] Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184–A1189.
- [11] S. Franger, F. Le Cras, C. Bourbon, H. Rouault, Electrochem. Solid-State Lett. 5 (2002) A231–A233.
- [12] H. Huang, S.-C. Yin, L.F. Nazar, Eletrochem, Solid-State Lett. 4 (2001) A170–A172.
- [13] P.P. Prosini, D. Zane, M. Pasquali, Electrochim. Acta 46 (2001) 3517–3523.
- [14] N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand, 127, Electrochem. Soc. Meet. Abs., Vol. 99-2, Honolulu, HI, October 17–22, 1999.

- [15] G. Li, H. Azuma, M. Tohda, Electrochem. Solid-State Lett. 5 (2002) A135–A137.
- [16] C. Delacourt, P. Poizot, M. Morcrette, J.-M. Tarascon, C. Masquelier, Chem. Mater. 16 (2004) 93–99.
- [17] M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, R. Kanno, J. Electrochem. Soc. 151 (2004) A1352–A1356.
- [18] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, C. Masquelier, J. Electrochem. Soc. 152 (2005) A913–A921.
- [19] A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, Y. Nishi, J. Power Sources 119-121 (2003) 232–238.
- [20] G. Li, H. Azuma, M. Tohda, J. Electrochem. Soc. 149 (2002) A743-A747.
- [21] G. Li, Y. Kudo, K.-Y. Liu, H. Azuma, M. Tohda, J. Electrochem. Soc. 149 (2002) A1414–A1418.
- [22] A. Yamada, S.-C. Chung, J. Electrochem. Soc. 148 (2001) A960–A967.
- [23] A. Yamada, Y. Kudo, K.-Y. Liu, J. Electrochem. Soc. 148 (2001) A1153–A1158.
- [24] A. Yamada, Y. Kudo, K.-Y. Liu, J. Electrochem. Soc. 148 (2001) A747–A754.
- [25] A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Appl. Phys. Lett., 87 (2006) 252503/252501-252503/252503.
- [26] W. Ojczyk, J. Marzec, J. Dygas, F. Krok, R.S. Liu, J. Molenda, Mater. Sci.—Poland 24 (2006) 103–113.
- [27] A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, Chem. Mater. 18 (2006) 804–813.
- [28] N.N. Bramnik, K.G. Bramnik, K. Nikolowski, M. Hinterstein, C. Baehtz, H. Ehrenberg, Electrochem. Solid-State Lett. 8 (2005) A379–A381.
- [29] S. Okada, S.-I. Sawa, Y. Uebou, M. Egashira, J.-I. Yamaki, M. Tabuchi, H. Kobayashi, K. Fukumi, H. Kageyama, Electrochemistry 71 (2003) 1136–1138.
- [30] O. Haas, A. Deb, E.J. Cairns, A. Wokaun, J. Electrochem. Soc. 152 (2005) A191–A196.
- [31] M.C. Tucker, M.M. Doeff, T.J. Richardson, R. Fiñones, J.A. Reimer, E.J. Cairnes, Electrochem. Solid-State Lett. 5 (2002) A95–A98.
- [32] M.C. Tucker, M.M. Doeff, T.J. Richardson, R. Fiñones, E.J. Cairns, J.A. Reimer, J. Am. Chem. Soc. 124 (2002) 3832–3833.
- [33] E. Cazzanelli, G. Marriotto, S. Passerini, F. Decker, Solid State Ionics 70–71 (1994) 412–416.
- [34] E. Cazzanelli, E. Mariotto, S. Passerini, W.H. Smyrl, J. Non-cryst. Solids 208 (1996) 89–98.

- [35] W. Huang, R. Frech, J. Electrochem. Soc. 145 (1998) 765–770.
- [36] W. Huang, R. Frech, J. Power Sources 81–82 (1999) 616–620.
- [37] T. Itoh, H. Sato, T. Nishina, T. Matue, I. Uchida, J. Power Sources 68 (1997) 333–337.
- [38] C. Julien, C. Perez-Vicente, G.A. Nazri, Ionics 2 (1996) 468-473.
- [39] C. Julien, M. Massot, C. Perez-Vicente, E. Haro-Poniatowski, G.A. Nazri, A. Rougier, Mater. Res. Soc. Symp. Proc. 496 (1998) 415–420.
- [40] T.J. Richardson, S.J. Wen, K.A. Striebel, P.N. Ross Jr., E.J. Cairns, Mater. Res. Bull. 32 (1997) 609–618.
- [41] A. Šurca, B. Orel, Electrochim. Acta 44 (1999) 3051–3057.
- [42] C.M. Burba, R. Frech, J. Electrochem. Soc. 151 (2004) A1032–A1038.
- [43] F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126–1130.
- [44] K. Sinha, J. Menédez, Phys. Rev. B 41 (1990) 10845-10847.
- [45] R.J. Nemanich, S.A. Solin, Phys. Rev. B 20 (1979) 392-401.
- [46] L. Nikiel, P.W. Jagodzinski, Carbon 31 (1993) 1313-1317.
- [47] M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid-State Lett. 6 (2003) A207–A209.
- [48] J. Wagner, M. Ramsteiner, C. Wild, P. Koidl, Phys. Rev. B 40 (1989) 1817–1824.
- [49] M. Ramsteiner, J. Wagner, Appl. Phys. Lett. 51 (1987) 1355-1357.
- [50] M.T. Paques-Ledent, P. Tarte, Spectrochim. Acta 30A (1974) 673-689.
- [51] O. García-Moreno, M. Alvarez-Vega, F. García-Alvarado, J. García-Jaca, J.M. Gallardo-Amores, M.L. Sanjuán, U. Amador, Chem. Mater. 13 (2001) 1570–1576.
- [52] V.I. Fomin, V.P. Gnezdilov, V.S. Kumosov, A.V. Pechanskii, A.V. Yeremenko, Low Temp. Phys. 28 (2002) 203–209.
- [53] V.I. Fomin, V.P. Gnezdilov, V.S. Kumosov, A.V. Peschanskii, V.V. Eremenko, S. Gentil, J.-P. Rivera, Low Temp. Phys. 25 (1999) 829–832.
- [54] W. Paraguassu, P.T.C. Freire, V. Lemos, S.M. Lala, L.A. Montoro, J.M. Rosolen, J. Raman Spectrosc. 36 (2005) 213–220.
- [55] L.D. Popovic, D. de Waal, J.C.A. Boeyens, J. Raman Spectrosc. 36 (2005) 2–11.
- [56] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, in: Interference and Diffraction of Light, fourth ed., Pergamon Press, Oxford, 1970, p. 614.
- [57] A.A. Salah, P. Jozwiak, J. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, C.M. Julien, J. Power Sources 140 (2005) 370–375.
- [58] P. Tarte, A. Rulmont, M. Liégeois-Duykaerts, R. Cahay, J.M. Winand, Solid State Ionics 42 (1990) 177–196.
- [59] C.M. Burba, R. Frech, Spectrochim. Acta A, in press.